If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98t-4.9t^2=0
a = -4.9; b = 98; c = 0;
Δ = b2-4ac
Δ = 982-4·(-4.9)·0
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(98)-98}{2*-4.9}=\frac{-196}{-9.8} =+20 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(98)+98}{2*-4.9}=\frac{0}{-9.8} =0 $
| 2773/15(x)=0 | | x=0,5/2 | | x=0,5 | | 2x+8x+0,5=1,0+2x+6x | | 10-7y=5 | | 8f=-28 | | 1.5x-20=-x+5 | | 15-6h2=10 | | y=0.8y+50 | | 2x+12=39-x | | 4x2-200=0 | | (-x+2)^2-4=12 | | y²-9=0 | | 2x+1x=24 | | 4x(-5x)=7 | | x20-20=20 | | 2y²-9=0 | | 2/3x+8=4 | | 0.25x2+-0.5x=0 | | 28y+4=3y² | | x(2x-1)=100 | | (5x^2+24x+19)/2=6456 | | 5(2x+0.4)+6(x-1.5)=0 | | 7(2x-3.9)=4(3x+1.3) | | (5n^2+24n+19)/2=6456 | | X²+(x+1)²=85 | | 3y⁴-3y²+3y+60=0 | | X²+5x+6=20 | | _1.3x+5.2=0 | | 11+22x=0 | | (x2+3x+-5)+(-3x2+-8x+9)=0 | | x*0.15=90 |